
Department of CSE Page 1 of 10

UNIT-5
Functional Programming Languages & Scripting Language

Functional Programming Language Introduction – CO5

 The design of the imperative languages is based directly on the von Neumann

architecture
– Efficiency is the primary concern, rather than the suitability of the language

for software development

 The design of the functional languages is based on mathematical functions
– A solid theoretical basis that is also closer to the user, but relatively

unconcerned with the architecture of the machines on which programs will

run

Mathematical Functions
 A mathematical function is a mapping of members of one set, called the domain

set, to another set, called the range set

 A lambda expression specifies the parameter(s) and the mapping of a function in

the following form

(x) x * x * x
for the function cube (x) = x * x * x

Lambda Expressions
 Lambda expressions describe nameless functions

 Lambda expressions are applied to parameter(s) by placing the parameter(s)

after the expression

e.g., ((x) x * x * x)(2)

which evaluates to 8

Functional Forms
 A higher-order function, or functional form, is one that either takes functions as

parameters or yields a function as its result, or both

Function Composition
 A functional form that takes two functions as parameters and yields a function

whose value is the first actual parameter function applied to the application of

the second
Form: h f ° g

which means h(x)f(g(x))

For f (x)x + 2 and g (x)3 * x,

hf ° g yields (3 * x)+ 2

Apply-to-all
 A functional form that takes a single function as a parameter and yields a list of

values obtained by applying the given function to each element of a list of
parameters

Form:

For h (x)  x * x

(h, (2, 3, 4)) yields (4, 9, 16)

Fundamentals of Functional Programming Languages- CO5
 The objective of the design of a FPL is to mimic mathematical functions to the

greatest extent possible

 The basic process of computation is fundamentally different in a FPL than in an

imperative language

Department of CSE Page 2 of 10

– In an imperative language, operations are done and the results are stored in

variables for later use

– Management of variables is a constant concern and source of complexity for

imperative programming

 In an FPL, variables are not necessary, as is the case in mathematics

Referential Transparency
 In an FPL, the evaluation of a function always produces the same result given

the same parameters

The First Functional Programming Language : LISP – CO5

LISP Data Types and Structures

 Data object types: originally only atoms and lists

 List form: parenthesized collections of sublists and/or atoms
e.g., (A B (C D) E)

 Originally, LISP was a typeless language

 LISP lists are stored internally as single-linked lists

LISP Interpretation
 Lambda notation is used to specify functions and function definitions.

Function applications and data have the same form.

e.g., If the list (A B C) is interpreted as data it is a simple list of three atoms,

A, B and C

If it is interpreted as a function application, it means that the function

named A is applied to the two parameters, B and C

 The first LISP interpreter appeared only as a demonstration of the universality
of the computational capabilities of the notation

ML – CO5
 A static-scoped functional language with syntax that is closer to Pascal than to

LISP

 Uses type declarations, but also does type inferencing to determine the types of

undeclared variables

 It is strongly typed (whereas Scheme is essentially typeless) and has no type

coercions

 Includes exception handling and a module facility for implementing abstract

data types

 Includes lists and list operations

ML Specifics
 Function declaration form:

fun name (parameters) = body;
e.g., fun cube (x : int) = x * x * x;

– The type could be attached to return value, as in
fun cube (x) : int = x * x * x;

– With no type specified, it would default to
int (the default for numeric values)

– User-defined overloaded functions are not allowed, so if we wanted a cube

function for real parameters, it would need to have a different name

– There are no type coercions in ML

 ML selection
if expression then then_expression
else else_expression

Department of CSE Page 3 of 10

where the first expression must evaluate to a Boolean value

 Pattern matching is used to allow a function to operate on different parameter

forms
fun fact(0) = 1

| fact(n : int) : int =n * fact(n – 1)

 Lists

Literal lists are specified in brackets

[3, 5, 7]

[] is the empty list
CONS is the binary infix operator, ::
4 :: [3, 5, 7], which evaluates to [4, 3, 5, 7]

CAR is the unary operator hd

CDR is the unary operator tl

fun length([]) = 0

| length(h :: t) = 1 + length(t);

fun append([], lis2) = lis2

| append(h :: t, lis2) = h :: append(t, lis2);
 The val statement binds a name to a value (similar to DEFINE in Scheme)

val distance = time * speed;

– As is the case with DEFINE, val is nothing like an assignment statement in

an imperative language

Haskell – CO5
 Similar to ML (syntax, static scoped, strongly typed, type inferencing, pattern

matching)

 Different from ML (and most other functional languages) in that it is purely

functional (e.g., no variables, no assignment statements, and no side effects of

any kind)

Syntax differences from ML
fact 0 = 1

fact n = n * fact (n – 1)

fib 0 = 1

fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

Function Definitions with Different Parameter Ranges
fact n

| n == 0 = 1

| n > 0 = n * fact(n – 1)

Lists

sub n

| n < 10 = 0

| n > 100 = 2

| otherwise = 1

square x = x * x

- Works for any numeric type of x

 List notation: Put elements in brackets

e.g., directions = ["north", "south", "east", "west"]

 Length: #

e.g., #directions is 4

 Arithmetic series with the .. operator
e.g., [2, 4..10] is [2, 4, 6, 8, 10]

 Catenation is with ++
e.g., [1, 3] ++ [5, 7] results in [1, 3, 5, 7]

Department of CSE Page 4 of 10

 CONS, CAR, CDR via the colon operator (as in Prolog)
e.g., 1:[3, 5, 7] results in [1, 3, 5, 7]

Factorial Revisited
product [] = 1

product (a:x) = a * product x

fact n = product [1..n]

List Comprehension
 Set notation

 List of the squares of the first 20 positive integers: [n * n | n ←[1..20]]

 All of the factors of its given parameter:
factors n = [i | i ← [1..n div 2],

n mod i == 0]

Quicksort
sort [] = []

sort (a:x) =

sort [b | b ← x; b <= a] ++

[a] ++

sort [b | b ← x; b > a]

Lazy Evaluation
 A language is strict if it requires all actual parameters to be fully evaluated

 A language is nonstrict if it does not have the strict requirement

 Nonstrict languages are more efficient and allow some interesting capabilities

– infinite lists
 Lazy evaluation - Only compute those values that are necessary

 Positive numbers

positives = [0..]

 Determining if 16 is a square number
member [] b = False

member(a:x) b=(a == b)||member x b

squares = [n * n | n ← [0..]]

member squares 16

Member Revisited
 The member function could be written as:

member [] b = False

member(a:x) b=(a == b)||member x b

 However, this would only work if the parameter to squares was a perfect square;

if not, it will keep generating them forever. The following version will always

work:
member2 (m:x) n
| m < n = member2 x n

| m == n = True

| otherwise = False

Applications of Functional Languages

 APL is used for throw-away programs

 LISP is used for artificial intelligence

– Knowledge representation
– Machine learning

– Natural language processing

– Modeling of speech and vision

 Scheme is used to teach introductory programming at some universities

Department of CSE Page 5 of 10

Comparing Functional and Imperative Languages
 Imperative Languages:

– Efficient execution
– Complex semantics

– Complex syntax
– Concurrency is programmer designed

 Functional Languages:

– Simple semantics

– Simple syntax

– Inefficient execution

– Programs can automatically be made concurrent

Summary of Functional Programming Languages

 Functional programming languages use function application, conditional

expressions, recursion, and functional forms to control program execution

instead of imperative features such as variables and assignments

 LISP began as a purely functional language and later included imperative

features

 Scheme is a relatively simple dialect of LISP that uses static scoping exclusively

 COMMON LISP is a large LISP-based language

 ML is a static-scoped and strongly typed functional language which includes

type inference, exception handling, and a variety of data structures and abstract

data types

 Haskell is a lazy functional language supporting infinite lists and set

comprehension.

 Purely functional languages have advantages over imperative alternatives, but

their lower efficiency on existing machine architectures has prevented them
from enjoying widespread use

Pragmatics
A software system often consists of a number of subsystems controlled or

connected by a script. Scripting is a paradigm characterized by:

 Use of scripts to glue subsystems together.

 Rapid development and evolution of scripts.

 Modest efficiency requirements.

 Very high-level functionality in application-specific areas.

Key Concepts
The following concepts are characteristic of scripting languages:

 Very high-level string processing.

 Very high-level graphical user interface support.

 Dynamic typing.

Case Study: PYTHON
 PYTHON was designed in the early 1990s by Guido van Rossum.

 It has been used to help implement the successful Web search engine GOOGLE,

and in a variety of other application areas ranging from science fiction (visual

effects for the Star Wars series) to real science (computer-aided design in NASA).

Department of CSE Page 6 of 10

Values and Types
 PYTHON has a limited repertoire of primitive types: integer, real, and complex

numbers.

 It has no specific character type; single-character strings are used instead. Its

boolean values (named False and True) are just small integers.

 PYTHON has a rich repertoire of composite types: tuples, strings, lists,

dictionaries and objects. A PYTHON list is a heterogeneous sequence of values.

 A dictionary (sometimes called an associative array) is a heterogeneous mapping

from keys to values, where the keys are distinct immutable values.

 The following code illustrates tuple construction:
date = 1998, "Nov", 19

Now date[0] yields 1998, date[1] yields ‘‘Nov’’, and date[2] yields 19.

 The following code illustrates two list constructions, which construct a

homogeneous list and a heterogeneous list, respectively:
primes = [2, 3, 5, 7, 11]

years = ["unknown", 1314, 1707, date[0]]

Now primes[0] yields 2, years[1] yields 1314, years[3] yields 1998, ‘‘years[0] =

843’’ updates the first component of years, and so on. Also,

‘‘years.append(1999)’’ adds 1999 at the end of years.

 The following code illustrates dictionary construction:
phones = {"David": 6742, "Carol": 6742, "Ali": 6046}

Now phones["Carol"] yields 6742, phones["Ali"] yields 6046, ‘‘phones ["Ali"] =

1234’’ updates the component of phones whose key is ‘‘Ali’’, and so on. Also,

‘‘David” in phones returns True, and ‘‘phones.keys()’’ returns a list containing

‘‘Ali’’, ‘‘Carol’’, and ‘‘David’’ (in no particular order).

Variables, Storage and Control
 PYTHON supports global and local variables.

 Variables are not explicitly declared, simply initialized by assignment. After

initialization, a variable may later be assigned any value of any type.

 PYTHON’s repertoire of commands include assignments, procedure calls,

conditional (if- but not case-) commands, iterative (while- and for-) commands

and exception-handling commands.

 However, PYTHON differs from C in not allowing an assignment to be used as an

expression.

 PYTHON additionally supports simultaneous assignment.

 For example:
y, m, d = date

assigns the three components of the tuple date to three separate variables.

Also:
m, n = n, m

concisely swaps the values of two variables m and n. (Actually, it first

constructs a pair, then assigns the two components of the pair to the two left-

side variables)

 PYTHON if- and while-commands are conventional.

 PYTHON for-commands support definite iteration.

 We can easily achieve the conventional iteration over a sequence of numbers by

using the library procedure range(m,n), which returns a list of integers from m
through n−1.

Department of CSE Page 7 of 10

 PYTHON supports break, continue, and return sequencers. It also supports

exceptions, which are objects of a subclass of Exception, and which can carry

values.

 The following code computes the Greatest Common Divisor of two integers, m

and n:
p, q = m, n

while p % q != 0:

p, q = q, p % q

gcd = q

 Note the elegance of simultaneous assignment.

 Note also that indentation is required to indicate the extent of the loop body.

 The following code sums the numeric components of a list row, ignoring any

nonnumeric components:
sum = 0.0

for x in row:

if isinstance(x, (int, float)):

sum += x

PYTHON Exceptions

 The following code prompts the user to enter a numeric literal, and stores the

corresponding real number in num:
while True:

try:

response = raw_input("Enter a numeric literal: ")

num = float(response)

break
except ValueError:

print "Your response was ill-formed."

This while-command keeps prompting until the user enters a well-formed

numeric literal. The library procedure raw_input(...) displays the given prompt

and returns the user’s response as a string. The type conversion
‘‘float(response)’’ attempts to convert the response to a real number. If this type

conversion is possible, the following break sequencer terminates the loop. If not,

the type conversion throws a ValueError exception, control is transferred to the

ValueError exception handler, which displays a warning message, and finally
the loop is iterated again.

Bindings and Scope
 A PYTHON program consists of a number of modules, which may be grouped

into packages.

 Within a module we may initialize variables, define procedures, and declare

classes. Within a procedure we may initialize local variables and define local

procedures. Within a class we may initialize variable components and define

procedures (methods).

 During a PYTHON session, we may interactively issue declarations, commands,

and expressions from the keyboard.

 These are all acted upon immediately. Whenever we issue an expression, its

value is displayed on the screen. We may also import a named module (or

selected components of it) at any time.

 PYTHON was originally a dynamically-scoped language, but it is now statically
scoped.

Department of CSE Page 8 of 10

Procedural Abstraction
 PYTHON supports function procedures and proper procedures.

 The only difference is that a function procedure returns a value, while a proper

procedure returns nothing.

 Since PYTHON is dynamically typed, a procedure definition states the name but

not the type of each formal parameter. The corresponding argument may be of
different types on different calls to the procedure.

PYTHON Procedures

 The following function procedure returns the greatest common divisor of its two

arguments:
def gcd (m, n):

p, q = m, n

while p % q != 0:

p, q = q, p % q

return q

Here p and q are local variables.

 The following proper procedure takes a date represented by a triple and prints

that date in ISO format (e.g., ‘‘2000-01-01’’):
def print_date (date):

y, m, d = date

if m = "Jan":

m = 1

elif m = "Feb":

m = 2

. . .
elif m = "Dec":

m = 12

print "%04d-%02d-%02d" % (y, m, d)

Here y, m, and d are local variables.

PYTHON procedure with dynamic typing

 The following function procedure illustrates the flexibility of dynamic typing. It

returns the minimum and maximum component of a given sequence:
def minimax (vals):

min = max = vals[0]

for val in vals:

if val < min:

min = val

elif val > max:

max = val

return min, max

 In a call to this procedure, the argument may be either a tuple or a list.

 In effect it has two results, which we can easily separate using simultaneous

assignment:
readings = [. . .]
low, high = minimax(readings)

 Some older languages such as C have library procedures with variable numbers

of arguments.

 PYTHON is almost unique in allowing such procedures to be defined by

programmers.

 This is achieved by the simple expedient of allowing a single formal parameter to

refer to a whole tuple (or dictionary) of arguments.

Department of CSE Page 9 of 10

PYTHON procedure with a variable number of arguments
 The following proper procedure accepts any number of arguments, and prints

them one per line:
def printall (*args):

for arg in args:

print arg

 The notation ‘‘*args’’ declares that args will refer to a tuple of arguments.

 All of the following procedure calls work successfully:
printall(name)

printall(name, address)

printall(name, address, zipcode)

Data Abstraction
 PYTHON has three different constructs relevant to data abstraction: packages,

modules, and classes.

 Modules and classes support encapsulation, using a naming convention to

distinguish between public and private components.

 A package is simply a group of modules. A module is a group of components

that may be variables, procedures, and classes.

 These components may be imported for use by any other module. All

components of a module are public, except those whose identifiers start with ‘‘_’’

which are private.

 A class is a group of components that may be class variables, class methods,
and instance methods. A procedure defined in a class declaration acts as an

instance method if its first formal parameter is named self and refers to an

object of the class being declared. Otherwise the procedure acts as a class

method.

 To achieve the effect of a constructor, we usually equip each class with an
initialization method named ‘‘ init ’’; this method is automatically called when

an object of the class is constructed. Instance variables are named using the

usual ‘‘.’’ Notation (as in self.attr), and they may be initialized by the

initialization method or by any other method. All components of a class are

public, except those whose identifiers start with ‘‘ ’’, which are private.

PYTHON Class
 Consider the following class:

class Person:

def init (self, sname, fname, gender, birth):

self. surname = sname

self. forename = fname

self. female = (gender == "F" or gender == "f")

self. birth = birth

def get_surname (self):

return self. surname

def change_surname (self, sname):

self. surname = sname

def print_details (self):

print self. forename + " " + self. surname

 This class is equipped with an initialization method and three other instance

methods, each of which has a self parameter and perhaps some other

parameters. In the following code:
dw = Person("Watt", "David", "M", 1946)

Department of CSE Page 10 of 10

the object construction on the right first creates an object of class Person; it

then passes the above arguments, together with a reference to the newly created

object, to the initialization method. The latter initializes the object’s instance

variables, which are named surname, forename, female, and birth (and

thus are all private).

 PYTHON supports multiple inheritance: a class may designate any number of

superclasses. Ambiguous references to class components are resolved by

searching the superclasses in the order in which they are named in the class

declaration.

 PYTHON’s support for object-oriented programming is developing but is not yet

mature. The use of the ‘‘ ’’ naming convention to indicate privacy is clumsy and
error-prone; class components are public by default. Still more seriously,

variable components can be created (and deleted) at any time, by any method

and even by application code.

Separate Compilation

 PYTHON modules are compiled separately. Each module must explicitly import
every other module on which it depends. Each module’s source code is stored in

a text file.

 For example, a module named widget is stored in a file named widget.py. When

that module is first imported, it is compiled and its object code is stored in a file

named widget.pyc.

 Whenever the module is subsequently imported, it is recompiled only if the

source code has been edited in the meantime. Compilation is completely

automatic.

 The PYTHON compiler does not reject code that refers to undeclared identifiers.

Such code simply fails if and when it is executed.

Module Library
 PYTHON is equipped with a very rich module library, which supports string

handling, markup, mathematics and cryptography, multimedia, GUIs, operating

system services, Internet services, compilation, and so on.

 Unlike older scripting languages, PYTHON does not have built-in high-level

string processing or GUI support. Instead, the PYTHON module library provides

such functionality. For example, the re library module provides powerful string
matching facilities using regular expressions.

Summary of Scripting Languages

 The pragmatic issues that influence the design of scripting languages: gluing,
rapid development and evolution, modest efficiency requirements, and very

high-level functionality in relevant areas.

 The concepts common to most scripting languages: very high-level support for

string processing, very high-level support for GUIs, and dynamic typing.

 The design of a major scripting language PYTHON, resembles a conventional

programming language, except that it is dynamically typed, and that it derives

much of its expressiveness from a rich module library.

	Functional Programming Language Introduction – CO5
	Mathematical Functions
	Lambda Expressions
	Functional Forms
	Function Composition
	Apply-to-all

	Fundamentals of Functional Programming Languages- CO5
	Referential Transparency
	LISP Data Types and Structures
	LISP Interpretation

	ML – CO5
	ML Specifics

	Haskell – CO5
	Function Definitions with Different Parameter Ranges
	Lists
	Factorial Revisited
	List Comprehension
	Quicksort
	Lazy Evaluation
	Member Revisited

	Applications of Functional Languages
	Comparing Functional and Imperative Languages
	Summary of Functional Programming Languages

	Pragmatics
	Key Concepts
	Case Study: PYTHON
	Values and Types
	Variables, Storage and Control
	PYTHON Exceptions

	Bindings and Scope
	Procedural Abstraction
	PYTHON Procedures
	PYTHON procedure with dynamic typing
	PYTHON procedure with a variable number of arguments

	Data Abstraction
	PYTHON Class
	Separate Compilation
	Module Library
	Summary of Scripting Languages

